search innovation
In vivo delivery system of the DNA modifying enzymes
keywords: hybrid nucleases, in vivo delivery system, gene corrections, DNA modifications, biochemistry, biophysics, biotechnology
offer number: 400

A novel method of in vivo genome editing with the use of hybrid nucleases, such as ZFN, TALEN and the CRISPR/Cas9 system for the purpose of precise genome editing in vivo

 

Hybrid nucleases, including ZFN, TALEN and the CRISPR/Cas9 system, constitute indispensable tools in genome. The use of designer nucleases outperforms other technologies for genome engineering, such as viral vectors, which carry considerable risk of genetic alterations of target cells and, in a consequence, may lead to malignant transformation if inserted into inappropriate sites of the genome. Thus, development of precise genome editing technologies enabled improving safety profile of gene therapy clinical trials and holds great promise for regenerative medicine in the future.


In most instances, designer nuclease activity is needed only transiently – just long enough to cleave the target site. Prolonged expression increases the risk of so-called off-target activity, which can be genotoxic. Transient expression can be achieved ex vivo by delivering the nucleases in the forms of mRNA or protein.

For in vivo delivery, however, these platforms are not efficient. Moreover, gene delivery via liposomes or other artificial nano-vesicles seem to be inefficient and may trigger an immune response in the host, which decreases expected biological effect. Therefore, the use of EVs, which play an important role in cell-to-cell communication, constitute an attractive technological solution to deliver designer nucleases.



EVs are natural nanovesicles released by any type of cells in activated or steady-state conditions. They are composed of a cellular membrane enclosing cytosolic components. By transferring their bioactive cargo, including small RNAs, messenger RNAs, proteins and lipids, EVs may influence fate decisions of the acceptor cells.

Based on their size and origin, EVs can be divided into exosomes and microvesicles. Utility of EVs derived from various cell populations, including stem cells, in transferring biological cargo to other cells has gain considerable interest in recent years. There have been attempts to use EVs for promoting neurogenesis; treatment of neuronal diseases; in wound healing; treating cancer, pain treatment and many others. However, antigen-defined stem cell-derived EVs (in particular ectosomes) has never been considered.



The subject of the offer is a new method of in vivo genome editing with the use of hybrid nucleases, such as ZFN, TALEN and the CRISPR/Cas9 system, delivered to target cells by EVs derived from stem cells in serum-free conditions and defined as the RNA-containing vesicles expressing stem cells surface markers: CD90, CD105, CD147, CD309 (in more than 20% of RNA-positive events) and lack of expression CD45.

Key features:

  • novel tool for efficient in vivo genome editing for treatment of variety genetic diseases in human patients i.e. liver-associated diseases, spleen-associated diseases, lung-associated diseases, heart-associated diseases and kidney-associated diseases,
  • antigen defined EVs (CD90+/CD105+/CD147+/CD309+/CD45-) can be collected from various populations of stem cells, including mesenchymal stem cells and induced pluripotent stem cells,
  • surface of EVs can be either unmodified, carrying natural panel of stem cell specific antigens, or can be genetically or chemically modified to display additional receptors, ligands or other surface molecules, to increase targeting a specific tissue or a desired cell type,
  • EVs are collected in a serum-free medium, which is of great significance for future clinical applications to treat human diseases,
  • since the data showed enhanced gene targeting in the liver using this technology, liver-associated diseases can be of particular interest as potential targets, including i.e.: phenylketonuria, amyloidosis, cirrhosis, cancer and carcinomas, hypercholesterolemia, non-alcoholic liver disease, amyloid neuropathy, cystic fibrosis, glycogen storage diseases, polycystic kidney and hepatic disease, hepatic failure, hepatic lipase deficiency, medullary cystic kidney disease, hepatoblastoma, hepatic adenoma, and others,
  • technology can be used to create gene knockouts, knock-ins and to achieve gene correction, if additional DNA donor is provided (ss/sdDNA oligos, plasmid DNA, viral vectors).


The offered in vivo delivery system of the genome DNA modifying enzymes is patent pending.
Further research and development of the invention are continued at the Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University and at the Albert-Ludwigs University Freiburg in Germany. Currently the Centre for Technology Transfer CITTRU is looking for entities interested in commercial application of the invention.

 

commercial utility: in basic science and in a treatment of genetic disease and/or disorder
field of science: biochemistry, biophysics, biology, medical biology, medicine, pharmaceutical science, health sciences, biotechnology
forms of protection: patent application
technological maturity: demanding R & D
property rights: co-ownership
variants of cooperation: license, consulting, spin-off company, comercial contract research, sale

information / broker of Jagiellonian University

name and surname: Klaudia Polakowska, PhD
phone number: +48 12 664 42 13, +48 519 329 129
NEWS
latest information
JU scientists to develop biological agricultural support solutions
The project “Interactions between plants and microorganisms in response to the presence of potentially toxic metals, metalloids and silicon (Si)” by Prof. Katarzyna Turnau from the JU Faculty of Biology won a grant from the Polish National Agency for Academic Exchange. The study aimed at replacing the widespread use of agrochemicals with biological agricultural support solutions will also involve researchers from Slovakia and Austria.
JU students will help people suffering from depression
Therapify is a mobile application designed to help depressed people. It was first conceived by Łukasz Pstrong, a graduate of the AGH University of Science and Technology in Kraków, and developed over the course of the last two years with collaborators from his university, the Jagiellonian University, and SWPS University of Social Sciences and Humanities in Warsaw.
Plakaty Demo Day II +
In January, we complete the project managed by CTT CITTRU as part of the program of the Ministry of Science and Higher Education - Incubator of Innovation +. We supported, among others, 18 research teams selected in the competition, that develop innovative technologies. Thanks to the funds granted by CTT CITTRU and hard work of technology transfer officers, pre-implementation research was financed, which increased the attractiveness of these inventions and investors interest in them. Take look at the gallery of posters for technologies, developed as part of the project. What do you think about it
CITTRU team
Our employees
PARTNERS
Innovation Forum KrakówKlaster Lifescience KrakówWolves SummitPACTTJagiellońskie Centrum Innowacji
Contact
GET IN TOUCH WITH US
Centre for Technology Transfer CITTRU
Jagiellonian University in Kraków - POLAND
ul. Bobrzyńskiego 14,
30-348 Kraków

PHONE:
+48 12 664 42 00
E-MAIL:
cittru@uj.edu.pl
Fundusze EuropejskieMNiSWInkubator InnowacyjnościUnia Europejska